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A HIGH-PASE FILTER FOR OPTIMUM CALIBRATION OF OBSERVING
SYSTEMS WITH APPLICATIONS

A.A. Lange
(Finnish Meteorclogical Institute; Helsinki, Finland)

The solution reported here is based on the standard
statistical theory of Best Linear Unbiased Estimates (BLUE),
All observational data relevant to the calibration problem are
listed and the underlying physical background of each
measurement is represented by an appropriate algebraic eguation..
The resulting normal equation system is bordered block-diagonal.
The sparse structuré of the matrix has been exploited through
an analytical solution methed. fThis selution of the calibration
problem can be regarded as a "filter" to suppress the "noise"
caused by the calibration errors which are constant cor almost
constant in time (i,e, low frequency). The computer solution
together with the formulae have been reported by the author
(IEEE PLANS, 1982) in connection with its application to the
multipath propagation problem of the (mega VLF signals used in
upper~alr windfinding. Another application has been a
windfinding comparisen experiment with several types of tracking
sensors, also reported by the author (WMO TECEMO, 1984). The
filtering method is currently being used in the attempt to
solve the problem of systematic errors in the thermodynamical
weather reports from the Global Observing System (WMO CIMO/WG-UA/
Dog, 6, 1986). Here the global coverage of the space-hased
obsexrving systems is expected to provide a sufficient degree
of overdetermination for the solution, similar preliminary
results being reported by McMillin and Gelman (WMO CIMO/WG-UA/Doc.
13, 1988).

1. INTRODUCTICN
1.1l Scope of paper
This paper specifies a general method of adjusting the

impact of calibration errors in cbservational data from an
overdetermined observing system. Optimality of the filtering
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method will be discussed and three meteorological applications
briefly described.

1.2 Historical background

Since World War II, upper—air measurements from the earth's
surface up to stratospheric heights of 10-30 km have provided
a scientific basis for weather forecasting, Errors in these
measurements have posed a difficult problem because better
observational reference data are remarkably costly to acquire
in any meaningful amount. Several radioscnde and windfinding
intercomparison experiments have been performed in past years
always yielding results with respect to one observing system
chosen more or less arbitrarily. Quite recently efforts have
been made to remove subjectivity from the results of
intercomparisons through the use of sophisticated statistical
methods.

Satellite-based observing systems have, since the late 1970's
greatly improved both the spatial and diurnal coverage of the
Globkal Cbserving System (GOS) of the World Weather Watch (WWW).
More redundancy has also.been intreduced into the GOS network
to make it possible to compare diffexent cobserving systems on
an operational basis. The advent of supercomputers and
extensive global data archival systems like that of the Eurcpean
Centre for Medium Range Weather Forecasts (ECMWF) now allow the
use of sophisticated statistical methods. Thus, it becomes
possible to identify those upper-air cobserving svstems which
suffer mogt from systematic errors and to diagnose their
calibration problems for an immediate computaticonal adjustment
{i.e. the filter). '

2. FORMULATICN OF PROBLEM
2.1 PRegression eguation system

Consider an arbitrary set of measuring devices for example
for windfinding: ballecon-tracking radars, radio and optical
theodolites, balloon-borne altimeters, Navaid signal
retransmitters, remote-sensing profilers, etc.,; or, for
geopotential height measurements of a given atmospheric pressure
level: radiosonde-based pressure, temperature, and humidity
sensors, satellite- and ground-based vertical sounders, etc.

" In the course of an intercomparison the values of cbservable
variables obey the following statistical model:

(byrc) + e

for i=l;e.e .1, & k=1,...,K

ik BB TS5y Jk "

(2,1.1)
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where each basic measurement is a synthesis of three components:
atmospheric response {(A), systematic error (8) and random error
{e}. More precisely, the nctation is as follows:

¥ @ an observable variable {slant-range, azimuth, elevation,
etc.)

-1 : an index for each device participating at observaticn
point k, i.e. i=l,...,1k

J : an index of each atmospheric state variable pertinent to
observation point k, i.e. j=l,....,Jk

an index for each cbservation point k, i.e. k=l,...,K
an index for each calibration error 1, i.e. 1=1,....L
a vector representing atmospheric state variables

i = ' =
{unknowns) i.e. Ek (bl,k""’ka,k) for k=1,...,K
: a vector representing calibration errors {unknowns,

assumed constant in time and space) i.e. E?(cl,...,cL)'

o~ &
“w o ow

Ls]

A : a functicn defined for each index i giving the physical
relationship between an chservable variable and the
atmospheric state variables of observation peint k
assuning no calibration error

8 : a function defined for each index i giving the physical
relationship between the systematic error of an
observable variable and the atmospheric state variables
of cbservation point k and the ¢alibration errors

e : a random error of a basic measurement, assumed Gaussian
about a zero mean and covariance matrix V with zero
correlations between different observation points
i.e. E{e) =0
and V = Cov{e) = E{e &") = diag(Vl,...,VK)

where e is the vector of all random errors ei k*
I

These equations (2,1.1) constitute a typical nonlinear
system which must be highly overdetermined to have a solution
which is stable enough statistically and which can also be
reliably determined by numerical meansg. The guality of a
solution, and indeed the existence of a meaningful solution
depends on the information content of the data. Thus, the
number of equations often becomes significantly larger than
the total number of the unknown parameters. -We may end up with
a huge system with millions of equations and thousands of unknowns.
The maximum-likelihcod estimates are utilized here because of
their suitable properties, see subsection 2.3. The optimization
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problem now becomes the minimization of the sum of sguared
residuals after they have been normalized with respect to
the error variances and covariances.

2,2 Solution of the regression problem

The nonlinear least-sguares solution can hormally be
established by using some iterative numerical method as
outlined for example by Chambers (1277). It may often be
necessary to use various Tayleor, Fourier, spline or chapeau
expansions for cost-effective approximation of the & and S
functions in equation system (2.1.1), After the eguations have
been linearized through differentiation at an initial or any
subsegquent guess of E'and ¢ they may be written in the following
vectorial form: .

dy = Jacobian (A+S,b) db + Jacobian(8,c) dc + de

(2.2.1)

which takes the following sparse structure when using matrix
notation:

= 1 2.7 . [ab.] "de. ]
ay, {kl 0 0...0 : 61 -fap,] + [ae,
1
dy © o X, 0 G| |db, de,
L] L - - ! - - -
|
- - - - ' - - -
i
i
(Fef |© O % 1% [ =Y
dc

(2.2,2)

where the vector elements are defined as follows:

dy, : the vector of the differences between the basic
measurements and the values of the & + S functions with
a current guess of the atmospheric state and calibration
parameters at observation point k, k=1,...,K
i.e. dy, = ape . cae & '
Teee Ay =AYy prenerdyy yoes 'dylk,k)
db, : the vector of the Gauss-Newton iterative adjustments
of the atmospheric state parameters at observation
point k, k=1,...,K i,e, dh, = (dbl,k""'dbj,k""'db 3!

—* Jk'k
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de : the vector of the Gauss-Newton iterative adjustments
of the calibration parameters
i.e. dg;(dcl,...,dcl,...,ch)'
de : the vector of the differences between the basic
measurements and the values of the A + S functions
with the updated guess of the atmospheric state and
calibration parameters at observation point k, k=1,...,K
i.e. = van aeed '
i.e dEk (del,k' 'dei,k' . eIk.k)
and the matrix elements as follows:

Xk : the Ik by Jk Jacoblan matrix of partial derivatives

of A + S functions with respect to the atmospheric

state parameters with a current guess of the atmospheric
state and calibration parameters at observation point

ki k=1l;.44,K

Gk : the Ik by L Jacobian matrix of partial derivatives of

s functions with respect to the calibration parameters
with a current guess of the atmosphericd state and
calibration parameters at observation peint k, k=1,...,K.

The solution of this eguation system (2.2.2) can be

exceedingly demanding in computer resources if no attention

is paid to the sparse structure of its coefficient matrix, see
Golub and Plemmons (1980), Fortunately, the equation system
can be partitioned into K subsystems; see Lange {(1982). A
subsystem is assigned to each observation point k, k=l,... K.
Using the terminology of the Stratified Sampling Theory we
may regard the observaticn points as strata, the components of

vector Ek as the separate regression parameters of stratum

k {k=l,...,K) and the components of vector ¢ as the combined
regression parameters, see Cochran (1977) or for a more
detailed discussion Lange (1973). The Gauss-Newton adjustments
of the atmospheric state variables for an iterative step are
then computed:

~ -1 -1 -1
db, = (X' Vv X)) U XV " {3y, - Gdc)

(2.2.3)
for k=1,...,K.

The calibration error adjustments (dc) are computed from:
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K 3 K

d&c = (ZG'RG) IG'RJdy (2.2.4)
oS B ST R

where Rk is the "residual cperator" that extracts the

normalized residuals out of the basic measurements and is
computed by:
_1}

= -1 ' -1 -1 '
B = Y% {I" R "

for k=1,...,K.

{2.2.5}

Some initial guesses of the regression parameters (b and ¢) are
needed. These guesses are then improved with the consecutive
adjustments derived from formulae (2,Z,3-4.} The process will
normally converge to the required sclution after a few iterative
steps.

2.3 Optimality and stability

Under quite general conditicns this method of solution leads
to the maximum~likelihood estimation of both the atmespheric
state and the calibration parameters, see Chambers (1977},
Consequently, the resulting estimates are efficient,
asymptotically at least. An estimator is called efificient if
it is unbiased and has the smallest variance among the entire
class of unbiased estimates, for example see Rao (1973).
Meteorological applications deal with increasingly large samples
so that the favourable asymptotic behaviour of derived estimates
can certainly be effectively exploited, Thus, the filtering
method leads to an optimum calibration because one cannot find
essentially better estimates for both the atmospheric state and
calibration parameters,

In practice, there may exist major uncertainties in the
magnitudes of the random error variances and covariances. Rao's
Minimum Norm Quadratic Unbiased Estimates (1972) and Horns'
Almost Unbiased Estimates (1975) have both been used for
calculating approximate magnitudes, Where the random errocxr
digtributicon is net Gaussian, the derived least-squares
estimates are not maximum-likelihood estimates, The asymptotic
efficiency of the least-squares estimates has in any case been
derived by Cox and Hinkley (1968}, The optimality of the method
may also be degraded due to a significant time variation
occurring in the calibration parameters. This problem is
overcome by using a time-series analysis expansion based on
coefficients that can be taken as constants. A longer learning
period will then certainlv be required in order to obtain



HIGH-PASS FILTER FOR OPTIMUM CALIBRATION 317

statistically stable estimates for the increased number of
calibration parameters.

The joint covariance matrix of the estimated regression
parameters is readily obtained from the soluticn of the last
iterative step to a good approximaticn, see Lange (1982),
These variances and covariances indicate how accurately the
atmospheric state and the calibration parameters are being
estimated:

H

I

Covibyraserby ) cOv(dgi,,..,dgK,qg

= + ! L, P —
Cl DISDl D]_SD2 D]_SDK : DlS
1 ] 1 -
D2SD1 C2+DZSD2 DstK | Dzs
|
- - '
!
. . '
- - I
|
L L] 4] ' -
DKSDl DKSD2 CK DKSDK : DKS
LI
- t - L] - ]
SDl .SD2 SDK : 5
t
where (2.3,.1)
RPN -1 ~1
G = BTV K
- . -1 -1 . -1
D= BV TR Ry G
X -1
8 = (ZX26"'RG)
ek Rk
and, Gk and,Rk are as in eguations (Z,2.2) and (2.2.5), respectively,

Lack of overdetermination for all or some subsets of the
observing systems causes the soluticon to become statistically
unstable. Under such circumstances the least~squares problem
is ill-posed and it is indicated by some unreascnably large
variances and covariances (2.3.1), One could then try to
remove suspect observing system subsets from the equation
system {2.1,1) in order to determine whether the Gauss-Newton
iteration also suffers from numerical instability.

For a realistic solution, other socurces may provide
additional information on the regression parameters, If the
ancillary data are in the form ¢of basic measurements then they
should have been included in the equation system (2.1.1} in
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the first place. Direct measurements of a shifted calibration
are to be accommodated by introducing an auxiliary stratum k,
say k=K+l, with JK+1=O'

The ancillary information may alsc be in the form of a
physical relationship between the parameters to be estimated,
see O'Leary and Bert (1986}. The following three techniques
are used:

(a} Regularization favours smeocth solutions at the
expense of fidelity to the basic measurements., The physical
relationship must be a mathematical eguality. It can be
catered for by using ancillary >4 and G, matrices with auxiliary

strata added into the eguation system (2.2.2}). The
regularization parameters are taken in as artificial residual
variances.

{b} Projection techniques make use of a mathematical or
statistical equality derived on the basis of the physical
relationship. The nuuber of regression parameters to be
estimated is reduced, and this increases the stability of
the solution. <Cluster Analysis can be used for combining
gimilar strata intc homogeneous groups. The Xk and Gk matrices
need to be adjusted accordingly.

{¢) 8ide constraints are prescribed in order to eliminate
undesirable solutiong. These conditions are represented by
mathematical inequalities. Stoer's methed (1971) could be
used for the partitioned solutions (2.2,.3).

Thus, under guite general conditions the solution of an
optimum calibration can be determined by using the filtering
method, The current software package has been used in
combination with technigues of the first two items (a) and (b)
for inclusion of ancillary lnformation.

3. NUMERICAL RESULTS
3.1 Mmulti-path problem with VLF Navailds

The International Omega Navigation System (ONS) was
successfully used for upper-air windfinding during the Global
Weather Experiment in 1978+79, see Lange (1986). The Vaisala
RS21-12CN navaidsondes retransmitted the 13.6 kHz Omega
signals from ascending weather balloons to data~acquisition and
recording units aboard 33 Tropical Wind Observing Ships (TWOS}.
Sericus discrepancies were cbserved between some computed
winds as they were crucially dependent on the selection of the
Omega staticnsg., It became obvious that the short-path signal
was not always dominant. Fortunately, there was a sufficient
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degree of overdetermination in the Wavaid signals from the
8-staticon Omega network for simultaneous estimation of a few
signal bearings and the entire wind profile of a sounding.

Numerical results from optimm calibration of the signal
bearings are demonstrated here by a typical case from the eastern
Pacific, The sounding was made on June 17, 1979 at 20.00 GMT on
board U.S. ship Knorr. The latitude and longitude were 10.20 N
and 113.49°W. Figure 1 shows the Omega signal data. Each station
has its own vertical chamnel., The ship was maintaining constant
speed and heading, cruising eastwards at 5 metres per second,
Therefore the phase values were changinc linearly in time, Liberia
and Reunion were paralliel to Japan and Hawaii. Had their signals
taken the short paths, their phases should have been more or less
parallel to Trinidad! The inclusion of Liberia and Reunion in the
standard hyperbeolic wind computation gave incorrect results as
geen by comparing the wind profiles in figures 2 and 3, However,
when the filtering method was used for the correcticn of the two
arrival directions of the signals from Liberia and Reunion, the
resulting profile in figure 4 exhibited remarkable similarity to
the best available reference given in figure 2, Validity of the
filtered solution in figure 4 was confirmed through an investigation
inte the internal consistency of the Navaid signals from all
eight Omega stations. The Gauss-Newton iteration needed several
steps due to high non—linearigy in the two bearings.

Y -
X__ @ 100
_FJ 7 = j &0 K 90
\ VTR AL
5 S R “
g 135 ~ il
- IR1E b ik stifE| K a0 - -
HIR ; EE’ 12 &l ELE a — -shigy
H £ § = o E o
2
H ™
f 5 100 By
>
J : ® 4 f !1>
g [ RESS - » A
N "8
I 3 k A& =15 £ .
LINIE TR Bao= 3 ]
Bl = 2\ 3 Ig\ E %
i - —| _k ] o <r’[
T ! L__h I _‘.\ o Y L o
L 1] Rii’)
. 3304 -26 =20 —15 -10 -5 0 5 10 {5 20 25 WS
Fig. 1 Raw phase data (thin Fig. 2 Computed velocity
lines) and smoothed profiles using all
phases (thick lines) from available signals
the Omega stations except long-path
(Japan, Norway, Liberia, signals of Liberia
Hawaii, Morth-Dakota, and Reunicn.

Reunion, Argentina and
Trinidad). Ship data is
above and sonde data below.
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Fig. 3 Computed velocity Fig. 4 Computed velocity
profiles using all profiles using all
available signals available signals and
without any bearing making the bearing
corrections. corrections for the two

long-path signals.
3.2 Wind-tracking with a hybrid system

A windfinding experiment involving several radars,
theodolites, Omega Navaids and laser distance measurements was
performed in Finland in 1972, This was to be one of the first
intercomparisons without a subjectively chosen reference system,
see Lange (1984}, It was essential that the errors of the basic
measurements were preoperly attributed to the two components
(systematic and random) as represented by equation (2,1.l1) and
that the hybrid system of all the different tracking devices
provided a sufficient degree of overdetermination. Calibration
erxrcors, for example inaccurate levelling of theodolites, were
assumed constant throughout the whole sounding pericd, whereas
the resulting systematic errors of elevation and azimuth
measurements always become more or less time-~dependent. The
A and S functions and their linearization were also discussed
by Lange (1984}, Only a few steps were needed in the numerical
iteration.
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3.3 Global upper-air measurements

For many radiosonde stations the monthly bias profiles of
geopotential heights tend to tilt either to the left or to
the right whether it is a night-time or day-time monthly mean,
see figure 5, Atmospheric tides alsoc play a role and their
amplitudes must be estimated as well.

RUBUST 1985 00Z RUBUST 1885 122
LAT= 34.75 LON=-120.57 LAT= 34.75 .LON=-120.5%
STN HT-12%1 SUN- 33.1¢ SIN HT-121 SUN=- 0.0°

10 Wy . LA

20 20 !
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Vertical monthly statistics of height departures from
the first guess (FG, solid line), analysis (AN, dashed
line} and initialized analysis (IN, dotted line) of the
numerical weather prediction system used at ECMWF for
North American station 72393 in August 1985. The
random (STD} and systematic (BIAS) components of the
departures at 00 GMT {left) and 12 GMT (right) were
depicted. Units are shown in metres and number of
reports recelved for each pressure level is given in the
columns between the STD and BIAS curves, ‘The mean of
the solar elevation angles are in degrees.

Fig. 5

2 huge equation system emerges, Its linearized form is
outlined in the Appendix, The normal equation system cannoct
be sclved on any existing computer or supercomputer system
without making use of the sparse structure of its matrix.
algorithm which was developed for the optimum calibraticn

The
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procedure ¢an now be applied., A proper distinction between
the separate and combined regression parameters must be made.

Numerical results from limited experimentation are available.
The first two equation sets of the joint equation system given
in the Appendix have been programmed thus far. BAn independent
sample of four previous months was used for the prediction of
radicsonde biases, Two of the predicted "optimum" calibration
profiles have been superimposed in figure 5.

A complete-linkage Cluster Analysis of all radiosonde
stations wag carried out and 700 stations were grouped into
412 homogeneous clusters (NAG, 1982), The number of the
separate regression parameters was reduced frem 11,184 to
7,440, ‘three combined regression parameters wexe involved
which related to tidal effects. The number of the equations
and the estimated parameters was 2,200,000 and 7,443,
respectively. The solution of the equation system (2.1.1}
required 135 seconds and 11 Mbytes on a Cray XMP-48 system
including the accumulation of the necessary sums and <oss-
products as well as the clustering. Double precision
arithmetic was used for some matrix operations. All eguations
were sufficiently linear to require no iteration.

4, CONCLUSIONS

The optimum calibration procedure is finding increasing use
in the handling of systematic errors of various overdetermined
observing systems, Powerful number-crunching and archival/
retrieval capabilities are required from the computer system,
be it then a supercomputer or a microprocessox, depending on
the application, They are undergoing rapid development and
cogts are coming down which makes the sophisticated computations
increasingly cost-effective.
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APPENDIX

THE JOINT EQUATION SYSTEM FOR GLOBAL UPPER-AIR DATA-COMPATIBILITY

i} Egquations for departures of radioscnde heights from reference
{FG,AN,IN) heights:

day ; radiosonde height = reference
height.
; station height error (barotropic

bk stn !
4 bias at a station).

k,stn,ref,p,hr

+ - ' R X ) . -
(Ek,nocrs Ek,nocref) gb ; nocturnalflnfrared rzonde bhias
noc ref bias.
+ (b - b y'£ * solarradiation(lat,lon,dat,p,hr)
-k, dayrs —* ,dayref’ —p ; solar bias.
+ (cwv - varef) * watervapourtidalforcing (lat,lon,dat,p,hr)
; tidal bias,
- L] 3
+ (cDz cozref) ozonetidalfo¥c1ng flat,lon,dat,p,hr)
; tidal bias,
+ (cnm - cnmref) * nonmigratorytide (lat,lon,dat,p,hr)
; tidal bias.
- * 1 3 ']
+ (csd CsdrefJ semldlurnalt%de (l?t,lon,dat, hr)
; tidal bias.
ek,stn,ref,p,hr ;i random error.

11} Eguations for 00-12z (day-night) differences of radiosonde

heights:
dy, 7 00z radiosonde height -~ 12z
k,stn, stn,p radiosonde height,
- ' " A . ,
Ek,dayrs Ep solarradiationdifference {lat,lion,dat,p.,00z,12z)

; solar bias.
+ cwv * watervapourtidalforecingdifference{lat,lon,dat,p,00z,12z)
) ; tidal bias.
e, * ozonetidalforcingdifference (lat,lon,dat,p,00z,12z)
; tidal bias.
+ < * nonmigratorytidedifference {(lat,lon,dat,p,00z,12z)
; tidal bias

r
e, ; random error.
k,stn,stn,p f
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iii) Eguations for radiosonde intercomparison height differences
{or heights) :

& ; radiosonde height - comparison
yk.stn,com:}?rhr ! height (or 0).g P
=g ‘£ ; comparison height bias (or true
—com,hr “p height).
+ b ' 4+ nocturnal/infrared radiosonde
=%, nocrs —p bias
by

'f * solarradiation(lat,lon,dat,p,hr); solar

sdayrs —p radiosonde bias,

+ ; random error,

ek,stn,com,p,hr

iv) Equations for departures of radiosonde heights from
precision radar heights:

dy ; radiosonde height - precision
k,stn,pre,p,hr height.
= Ek nocrs‘f ; nocturnal/infrared radiosonde
f F bias.

+ b 'f * golarradiation(lat,lon,dat,p.hr); solar
—k,dayrs “p radicsonde bias.

+ ; .
ek,stn,pre,p,hr ; random error

7} Eguations for acceleration vectors of tidal winds
{00,06,12,182 TEMP/PILOT} :

; wind increment/time increment
Coriolis force
c * watervapourtidalwindforcingvector (lat,lon,dat,p, hr)

dzstn,p,hr

WV
+ €y * ozonetidalwindforcingvector (lat,lon,dat,p, hr)
+ €m * nonmigratorytidalwindvector (Lat,lon,dat,p, hr)
+ €. a * gemidiurnaltidalwindvector (lat,lon,dat, hr)
+ e ; random error vector.,
—gtn,p,hr
vi) Bguations for differences between radiosonde and satellite
radiances:
4 : s .
rk,stn,sch,hr ; ¥radicsonde "radiance" ~ satellite
- p g radiance,
—k,nocrs —sch ; nocturnal/infrared radiosende bias.

+ * solarradiation(lat,lon,dat, ,hr); solar
radiosonde bias.

vertical weighting function biases of
a satellite channel

; nonlinear response of a satellite

chanhnel.

t
Ek,dayrs Sscn
-c 't H
—sch,vwf —k,stn,hr
-cC 'l
—gch,nlr —radlevel

+ e ; random error,
k,stn,sch,hr !
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vii}) Equations for differences bhetween reference {FG,AN,IN)
and satellite radiances:

dr ; reference "radiance" -satellite
k,ref,sch,hr ! )
radiance.

;7 nocturnal reference bias.

L]
Ek,nocref gsch

N * . . .o "
+ Ek,dayref gsch solarradlatlon(laF,Ion,dat, hr) ; "solar
reference bias
_ ' . . o . . :
Esch,vwf Ek,ref,hr ; vertlcal.welghtlng functicn biases of
a satellite channel.
- 'l : 1li 11i
Esch,nlr‘—radlevel ;} nonlinear response of a satellite
channel,
- {c - cwvref) * watervapourtidalforecing{lat,lon,dat,sch, hr)
; tidal bias,
- (coz - Cozref) * ozonetidalforcing {lat,lon,dat,sch,hr)
;o tidal bias.
- (cnm - cnmref) * nonmigratorytide {lat,lon,dat,sch,hr)
; tidal bias.
- (cSd - Csdref} * semidiurnaltide {iat,lon,dat,sch,hr)
; tidal bias.
+ . . .
ek,ref,sch,hr ; random error.,

where the separate {(b) and combined {c) regression parameters

and parameter vectors (b and ¢, respectively) to be estimated

have been subscripted in a degbriptive fashion {(see "; comments,").
The other parameters are as follows:

k =l,...,K i,e. total number of radiosonde and satellite
sounding elusters 500-1C00

stn=1l,...,total number of radiosonde stations and comparison
sites 700-1000

ref=firgt guess (FG), analysis (AN) or initialized analysis {IN)
height

com=derived data from radiosonde intercompariscns used as a
comparison standard

pre=precision radar (Wallops Island, etc.}

p =1000,850,700,500,400,300,250,200,150,100,73,50,30,20,10 hPa

hr =00,06,12,18z, etc, as available (usually 00 and 12z only)

lat=latitude of a staticn or a radicsonde experiment site

lon=longitude (as above)

dat=Julian date (1--365)

sch=1,2,3,4,5,56,7,13,14,15,16,17(HIRS) ,2,3,4(MSU)1,2,3(S8U) for
each satellite

radlevel=radiance level in a satellite radiometer channel {see
above)}
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[s1}

Sen™ vactor of heightbiases—to-radiance conversion

for a saktellite channel
= vector of vertical basis function wvalues for pressure level p

huém

= yector of values of some basis functions for a
—radlevel

radiance level

Ek = vector of Planck's emittances from the pressure
stn hr

levels for radiosonde data
Ek,ref,hr = vector of Planck's emittances from the pressure
levels for reference data.

Some "a priori" estimates of the variances of the random errors
are used as welghts according to the linear estimation theory in
order the minimize adverse effects of data from unstable sources.
Rao's MINQUE (Minimum-Norm-Quadratic-Unbiased-Estimation} and
related variance component estimation thecries are to be used
for improved "a posteriori" estimates of the random error
wvariances, These results can be used in the quality monitoring
of cbservational data e.g. radiances from each satellite channel
etc. In addition, this results in an unbiased estimation of
accuracies of different sounding systems and first guess (FG)
analysis fields to be used for the determination of the optimal
weights of Optimum Interpolation {(OI}.



